8/15/22, 9:33 AM How to Consume and Produce XML using Application Schemas with the XSD-Driven XML Writer

Technical Forums (/s/forums) Knowledge Base (/s/knowledge-base) Ideas (/s/bridea/acideasULD__bi Qo

< EME Desktop
(/S/Topic/0TO4Q000000QL9UWAG/Fme-...

How to Consume and Produce XML using Application Schemas with the XSD-Driven XML Writer
®© Aug 3, 2022 « Knowledge

Product Type
FME Desktop

FME Version
2022.0

Tutorial: Tutorial: Getting Started with XML (/s/article/tutorial-getting-started-with-xml) | Previous: XML Writing with XMLTemplater (/s/article/xml-writing-with-
xmltemplater) | Next: GML Reading (/s/article/reading-xmlgml).

Introduction

In 2020, FME released a new XSD-Driven XML reader and writer. If you are new to XML, this tutorial series (https://community.safe.com/s/article/tutorial-getting-
started-with-xml) describes how to read, process, and write XML in FME. XML Schema Definition, commonly abbreviated as XSD, was created to standardize the

way elements are described in XML documents.

As you may be familiar, Extensible Markup Language or XML can be extremely versatile, making it appealing to many applications. However, XML can become

complex, especially if documents are highly nested. XSD is one - of multiple - adopted method(s) for combatting this issue.

XSD was introduced in 2001, after being acknowledged by the World Wide Web Consortium (W3C) for being a beneficial way of structuring, defining, and
restricting elements. Uniquely, in FME, XSD-Driven XML Reading/Writing gives you the advantage of interpreting XML elements as FME features.

Where is XSD-Driven XML Used?

XSD-Driven XML is beneficial if there is an application schema available, and the user wants to preserve that schema.

When FME accesses the XSD, XML elements become schema-driven, as opposed to data-driven. Though the XML reader is frequently used to convert XML to GIS,
the reader itself can’t support complex schemas (no schema support). Similarly, before, complex writing XML used to require the use of an XMLTemplater, but
now XSD-Driven XML can solely comply with the respected schema. Note that for GML, it is usually preferable to use the GML reader/writer unless there is some

aspect of the schema that is not supported, in which case XML XSD might help (such as for unsupported element or geometry types).
Format Similarities: Format Differences:

https://community.safe.com/s/article/XSD-Driven-XML 1M1

8/15/22, 9:33 AM

* XSD is written with XML

e XSD and XML are both
object-oriented (flat
schema potential)

* Both formats satisfy to
W3C recommendations

* Both are human and
machine-readable

e Store avariety of

How to Consume and Produce XML using Application Schemas with the XSD-Driven XML Writer

XSD defines elements and
structures, where XML
describes data

XSD focuses on XML
interpretation

XSD can be used for XML
validation

XSD can restrict node
values

XSD can be used to create

custom data types

structured information e XML generally requires
more configuration if an

XSD is not present.

XSD Driven XML Writing Demo

The purpose of this exercise is to demonstrate writing XML using the new XSD Driven XML writer. In this scenario, we are creating a natural disaster alert.

Step-by-step Instructions

1. Start FME Workbench
Open FME Workbench on your machine and open a blank workspace. Note if you are short on time, open the XSD-DrivenWriter-Begin.fmw then skip to step 4.

This starting workspace has the demo data already created.

2. Add a Creator

Add a Creator transformer to the canvas. In the parameters set Geometry Object to Box. Leave all other parameters as default.

%" Creator Parameters *

Transformer Name: |Creator |

General

Geometry Source: | Geometry Object i |
Geometry Object: !Box “— | B Iy
rdinate List >
Coordinate System: | /l Iy
Mumber to Create: i1 | fi
Create At End: | Mo v |T

Output Attribute Name
Creation Instance: I_creation_instance i
Help {’%Prﬁe{'s v OK Cancel

3. Add an AttributeCreator
Now we are going to create information content. Add an AttributeCreator, and connect it to the Creator. Double click the transformer to access the parameters.

In the parameters, add the following attributes and corresponding values:

New Attribute:
Attribute Value:

https://community.safe.com/s/article/XSD-Driven-XML 2/M1

8/15/22, 9:33 AM How to Consume and Produce XML using Application Schemas with the XSD-Driven XML Writer

language en-US
category{0} Safety
responseType{0} Monitor
event Flood
urgency Expected
severity Moderate

Test Message:
description Monitor flood levels on the Fraser River

near Fort Langley.

certainty Observed
contact lizard@safe.com (mailto:lizard@safe.com)
% AttributeCreator Parameters b4

Transformer Mame: |AttributeCreator

' Advanced: Attribute Value Handling
Attributes To Create

New Attribute Attribute Value

language [en-us

category{0} [safety

responseType{0} [Menitor

event E| flood

urgency [Expected

severity [Moderate

description E| Test Message:... (MultiLine)
certainty’ [Observed

contact] lizard@safe.com

+ = - v = x| X » | Filter v | Impott...
Help {éii’lﬁets = Cancel

4. Add a DateTimeStamper

Next, add a DateTimeStamper and connect it to the AttributeCreator. In the parameters, change the Time Zone to Local and the Output Attribute Name to sent.

https://community.safe.com/s/article/XSD-Driven-XML 3/M

8/15/22, 9:33 AM How to Consume and Produce XML using Application Schemas with the XSD-Driven XML Writer

DateTimeStamper Parameters X

Transformer Name: |DateTimeStamper

General
Type: |Datetime il |
Time Zone: | Local # 2 Wb
Include Time Zone Offset: No il [T
Preview

20220802112450.4783813

Output Attribute Name

Result: |5enﬂ « | T
Help ’C‘ii’rseﬁ ¥ Cancel

4. Convert to ISO Datetime Format

For the XML document to be validated, the datetime value needs to conform with the ISO datetime format. Add a DateTimeConverter and connect it to the
DateTimeStamper. In the parameters, set the Datetime Attributes to sent. Then for Input Format select FME, and for Output Format select %Y-%m-
%dT%H:%M:%S (ISO datetime).

w* DateTimeConverter Parameters x
Transformer Mame: |DateTimeCom.rerter |
General
Datetime Attributes: |sent | ws| |
Input Format: |FME V| x
Output Format: | %Y-%m-%dT%H:%M:%s v| [
Repair Overflow: | Yes L2 Wi
Passthrough nulls, empties, or missing: | Ne el |
Preview
' Preview Data
20220802112559.1520508-07:00 -> 2022-08-02T11:25:59,1520508
' Quick Reference
Help f‘ii’lesets ik Cancel

5. Add a GeometryExtractor

One limitation with the XSD XML reader / writer is that there is no geometry support out of the box - any geometry handling needs to be managed as xml
fragments. To this end, we are going to start generating geometry XML using the GeometryExtractor. We use GML 2.1.2 since it uses an XML coordinate syntax
similar to what is required for this application schema. Add a GeometryExtractor and connect it to the DateTimeConverter. In the parameters, set the Geometry

Encoding to GML v2.1.2; there are no other parameters to set.

* GeometryExtractor Parameters X

Transformer Name: |Ge0metryExtractor |

General
q Geometry Encoding: |GMLV2.‘I.2 v| g
Remove Geometry: | No v X
> Geohash
¥ GML/KML
Omit XML Namespace Declarations: | No 4 W

6. Flatten XML

https://community.safe.com/s/article/XSD-Driven-XML 4/11

8/15/22, 9:33 AM How to Consume and Produce XML using Application Schemas with the XSD-Driven XML Writer

We are going to use an XMLFlattener to flatten the content of XML element(s) into feature attributes. Add an XMLFlattener to the canvas and connect it to the
GeometryExtractor. In the parameters, set the XML Source Type to Attribute with XML document, then select _geometry as the XML Attribute. For Elements to
Match, type in coordinates. Expand Expose Attributes, then for Attribute to Expose type in coordinates.

Make sure to set the XML Source Type as Attribute with XML document, and the XML Attribute to ‘_geometry’ (the Destination Geometry Attribute we created in

the GeometryExtractor).

% XMLFlattener Parameters

Transformer Name: |XMLFfattener

XML Source

AML Source Type: | Attribute with XML document

AML File

XML Attribute: | @ _geometry

Flatten Paths

Elements to Match: |coordinate_r.

Customize Attributes

Elements as XML Fragments: |

Flatten Options:

¥ Expose Attributes

Attributes to Expose: |c00rdinate5

Help {3 Presets ~ oK

Cancel

7. Add Area Properties

Add another AttributeCreator to the canvas and connect it to the XMLFlattener. We will use this transformer to add area properties to our emergency alert. In

the parameters, we will define two new attributes to store area coordinates and description.

New Attribute: Attribute Value:

area{0}.polygon{0}

coordinates (attribute)

area{0}.areaDesc Fraser River near Fort Langley

®% AttributeCreator Parameters

Transformer Mame: |AttributeCreato r_?_l

' Advanced: Attribute Value Handling
Attributes To Create

New Attribute Attribute Value
area{0}.polygon{0} @ coordinates
areal0}.areallesc El Fraser River near Fort Langley

+ — a4 + =T = s Filter w Import...
Help | | @@ Presets ~

Cancel

8. Add an Aggregator

Next, we will need to generate lists for the nested elements in the document. Add an Aggregator to the canvas and connect it to the AttributeCreator_2.

In the parameters, set the Aggregation Mode to Geometry - Assemble One Level. Next, set the Accumulation Mode to Use Attributes From One Feature. Lastly,

https://community.safe.com/s/article/XSD-Driven-XML

5/11

8/15/22, 9:33 AM

we are going to generate a list. Enable Generate List by clicking the checkbox, then set the List Name to info. Click on the ellipsis for Selected Attributes and

click Select all, then un-select _creation_instance and _geometry.

How to Consume and Produce XML using Application Schemas with the XSD-Driven XML Writer

X Aggregator Parameters

> [Group Processing

Transformer Name: |Aggregator

&K Select 'Selected Attributes' Attributes

Select Items

General
Aggregation Mode: G try - A ble One Level vl ™
Vv Attribute Accumulation
Accumulation Mode: Use Attributes From One Feature « V| [
Attributes to Concatenate: I“‘:‘ items selected -l |¥
Separator Character: l,] w
Attributes to Sum: IHC items selected | [¥
Attributes to Average: IHG items selected -l |
Attributes to Average, Weighted by Area: INv: items selected. ¥ 4hd
v [Generate List
List Name: Iinfo l I
Add To List: Selected Attributes s

Selected Attributes: L/ent language responseType{} sent severity urgench -l |¥

> Assemble One Level
> Assemble Hierarchy
Output Attribute Name

Help {3 Presets ~

Number of Aggregated Features:

O @ _geometry
v [areaf}
M @ areaDesc
& @ polygon{}
@ category(}
certanity

"
o
3
=
W
2

coordinates
description
event
language
responseType{}

w
m
3
-

ol fsfisfisfisfifiefisfis
g
g

St e

3
<

[@ _creation_instance

[Q Fitter

| O selectal

Selected Items

\area{}.areaDesc
larea{ }.polygon{}
category{}
certanity
contact
coordinates
description

ent

e G

9. Define Root Alert Content

Before writing out, add a final AttributeCreator to define the root alert content. Use the table below to add the alert property values (feel free to have fun with

the values):

New Attribute:

identifier

sender

addresses

source

status

msgType

scope

Attribute Value:

@UUID()

Lizard

9272 Glover Road, Langley, BC

FME

Exercise

Alert

Public

https://community.safe.com/s/article/XSD-Driven-XML

6/11

8/15/22, 9:33 AM How to Consume and Produce XML using Application Schemas with the XSD-Driven XML Writer

% AttributeCreator Parameters
Transformer Name; |AttributeCreator_3
* Advanced: Attribute Value Handling
Attributes To Create
New Attribute Attribute Value &
identifier B euuipg
sender El Lizard
addresses El 9272 Glover Road, Langley, BC
source El FME
status E| Exercise
msgType [Alert
scope [Public
v
Help f‘iplesets % Cancel

10. Add an XSD-Driven XML Writer

Now the data is ready to be written out. Add an XSD-Driven XML writer to the canvas, and browse to an output folder. Name the dataset Alert_Output.xml, then

change the Feature Type Definition to Import from Dataset. Before clicking OK, open the Parameters.

w) Add Writer

Writer

Format: | XSD-Driven XML

Dataset: ISML, KML and Web Services\OutputiAlert_Outputxml” |

Coord. System: | Same

Add Feature Type(s)

Feature Type Definition: | Import from Dataset.., 4—

w

Cancel

X

In the parameters, set the Application Schema to ...\cap.xsd. Then for Feature Paths, click on the ellipsis and select cap:alert. This is also a beneficial time to
validate the XML output. Set Validate Dataset to Yes. Also, enable Pretty Print to Yes. Click OK twice.

https://community.safe.com/s/article/XSD-Driven-XML

7M

8/15/22, 9:33 AM How to Consume and Produce XML using Application Schemas with the XSD-Driven XML Writer

=) X5D-Driven XML Parameters X

Application Schema

XS5D Selection

+ Application Schema: IXML and Web Services\Data\cap xsd” | >

xsiischemalocation: | | ._'_'_?_

Features
* Feature Paths: |cap:ahark | v
XSD Types as Features: | | _. -

Attributes

Elements as XML Fragments: | | .. nd _.
X5D Types as XML Fragments: | | . 4
Elements as Attributes to Ignore: | | .. w _.
5D Types as Attributes to Ignore: | | .. 4
Max Atttributes Per Nested Attribute: 100 |

Settings
XML Namespace Declarations: | |_
Add XML Namespace Prefix to: | w

Custom xsi:schemalocation: | | ane |

sl Validate Dataset: | Yes v

» XML Appender
¥ Pretty Printing

—} Pretty Print: | Yes |

Indent Sze [1 v
Replace Tabs with Spaces: No v
Indent Text: | No v

Help ﬁpresﬁs - | Cancel

In the Import Writer Feature Types dialog, browse to the cap.xsd dataset, then click OK. You may need to switch the file type to All Files (*) in your file browser to

see the cap.xsd file.

Connect the alert writer feature type to the AttributeCreator_3.

o)

Alert properties

Define area
properties

IS0 DateTime

11. Run and Inspect
Run the workspace then input the output using Notepad++ or similar text editor. Another method of validating the output is by reading it back in using FME

Data Inspector.

https://community.safe.com/s/article/XSD-Driven-XML 8/1

8/15/22, 9:33 AM How to Consume and Produce XML using Application Schemas with the XSD-Driven XML Writer

<?xml version="1.0" encoding="UTF-8"?>
<cap:alert xmlns:cap="urn:oasis:names:tc:emergency:cap:1.1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<cap:identifier>13b@fcc4-fed6-4b9c-9aa3-09ad924bbo0c</cap:identifier>
<cap:sender>Lizard</cap:sender>
<cap:sent>2021-02-22T13:52:41.7695242</cap:sent>
<cap:status>Exercise</cap:status>
<cap:msgType>Alert</cap:msgType>
<cap:source>FME</cap:source>
<cap:scope>Public</cap:scope>
<cap:addresses>9272 Glover Road, Langley, BC</cap:addresses>
<cap:info>
<cap:language>en-US</cap:language>
<cap:category>Safety</cap:category>
<cap:event>flood</cap:event>
<cap:responseType>Monitor</cap:responseType>
<cap:urgency>Expected</cap:urgency>
<cap:severity>Moderate</cap:severity>
<cap:certainty>Observed</cap:certainty>
<cap:description>Test Message:
Monitor flood levels on the Fraser River near Fort Langley.</cap:description>
<cap:contact>lizard@safe.com</cap:contact>
<cap:area>
<cap:areaDesc>Fraser River near Fort Langley</cap:areaDesc>
<cap:polygon>-122.63,49.16 -122.51,49.16 -122.51,49.21 -122.63,49.21 -122.63,49.16</cap:polygon>
</cap:area>
</cap:info>
</cap:alert>

Validation

The purpose of validation is to ensure documents comply with XML syntax and XSD standards. Typically, to validate XML files in FME, the process is enabled in
the writer (Validate Dataset: Yes), or include an XMLValidator transformer in your workspace. If the XML is not valid, the log errors will be briefly reported,
including details such as the line, column number, and a brief description of the error. Common errors include missing IDs, incorrectly formatted date fields,

missing elements, and namespace elements. Remember, for both reading and writing XML, element order matters!

Unfamiliar with XML error notation? XML error messages come from the Apache Xerces parsing library (open source). Let’s understand the partial example

below:

ERROR | .. for content model €(identifier,name,phoneNum?,email?,gender+,references?,note*)

Elements in the model list that have no special trailing notation are ‘identifier’ and ‘name’ - these are required properties. Optional items in the content model
are followed by a ‘?’, like phoneNum and email. The remaining notations denote multiples (*), lists (*) or restricted domain (picklist) (+) data types. For example,
gender could have the following picklist values: Female, Male or Other.

The next examples are specific to XML validation. The error below will appear if you are missing an element.

ERROR |XML Validation: Error in ‘6. EmergencyAlters_CAP1.2 XML\capOut.xml’ on line 26, column 13: ‘element
‘certainty’ is not allowed for content model €(language?,
category+,event, responseType*,urgency, severity,certainty,audience?,eventCode*,effective?,onset?,expires?, senderName?

,headline?,description?,instruction?,web?,contact?,parameter*, resource*,area*)

This message may seem misleading at first. It sounds like the element ‘certainty’ is not allowed. This is not quite accurate. What it really means is that in this
case ‘certainty’ is not allowed in that order, because a required element that precedes it is missing. In this case, the severity property is missing and so when the
parser encounters the certainty element it flags this warning.

We see a similar problem below:

ERROR |XML Validation: Error in ‘6. EmergencyAlters_CAP1.2 XML\capOut.xml’ on line 27, column 13: ‘element ‘source’
is not allowed for content model

‘(identifier,sender,status,msgType,source?,scope,restriction?,addresses?,code*,note?,reference?,incidents?,info*)

Here, ‘msgType’ is missing and so when the validator encounters this ‘source’ element the above warning is generated.

Like mentioned earlier, XML can be highly nested, which means both parent and child elements need to be included to access information throughout the
document. Often this is modeled by the presence of parent and child XML ids such as xml_parent_id and xml_id. It isimportant to check the structure of your
output to make sure it is correct. You may have orphaned features and depending on the schema this may or may not generate a warning. However, when you
look at the XML output, you may notice features at the root level that really belong within a parent.

https://community.safe.com/s/article/’XSD-Driven-XML 9/11

8/15/22, 9:33 AM How to Consume and Produce XML using Application Schemas with the XSD-Driven XML Writer

One good way to understand this better for a given schemais to find a valid sample XML dataset and read this with FME and send some features to the log with
a Logger. The resulting features will show the parent/child ids that result from FME serializing the nested structure into FME features. Once your XSD-Driven XML
document is successfully validated, turning off validation can improve writing performance.

Considerations

After completing this tutorial you will have successfully written a disaster alert using CAP1.1 XSD. As you just witnessed, no XMLTemplator or XMLValidator was
required in our workspace. The XSD-Driven XML format reader/writer can be used to optimize workflows and replaces a more manual approach to working with
XML schemas.

Continue to the next article: GML Reading (/s/article/reading-xmligml)

First Published Date
2/24/2021, 6:32 PM

Last Published Date
8/3/2022, 9:46 PM

Formats and Applicatio... FME Desktop
(/s/topic/0TO4Q000000... (/s/topic/0TO4Q000000...

Sort by:

Latest Posts w Y~ ¢

a LizAtSafe (/s/profile/0050c00000CeGVOAAN) (Employee) published a new version of this Knowledge.
August 3, 2022 at 9:46 PM (/s/feed/0D54Q00009ggQyYSAU),

1view

1y Like ® Comment

f(“\‘ trentatsafe (/s/profile/005a000000CdnWnAAJ) (Employee) published a new version of this Knowledge.
W July 29,2022 at 2:26 PM (/s/feed/0D54Q00009fwaUDSAY),

1y Like ® Comment

Follow

. 2b. Using the XSD Driven XML Writer
Aug3,2022 + 65KB + zip

View All

https://community.safe.com/s/article/XSD-Driven-XML 10/11

8/15/22, 9:33 AM How to Consume and Produce XML using Application Schemas with the XSD-Driven XML Writer

(/s/relatedlist/kal4Q000001DWxyQAG/AttachedContentDocuments)

Related Articles

How to Read XSD-Driven XML (/s/article/How-to-read-XSD-Driven-XML)

Tutorial: Getting Started with XML (/s/article/tutorial-getting-started-with-xml)

XML Writing with XMLTemplater (/s/article/xml-writing-with-xmltemplater)

XML Writing to Custom Application Schemas - XMLTemplater - Basic Example (/s/article/xml-writing-to-custom-application-schemas-xmltempl)

Converting from XML (Simple XML Reading Example) (/s/article/tutorial-getting-started-with-xml-reading)

Getting Started Ideas Feedback
- (.-/s/topic/0TO4Q000000QKioWAG/welcoiiné$/bridea/acideasULT _bridea c/00B AOViEY| LkoFWpziDYaWQKkL
Forums (../s/forums/). Groups
SAFE SOFTWARE?®
Knowledge Base (../s/knowledge-base/) (../s/group/CollaborationGroup/00Ba000000A0BXxJEAV),
https://safe.
Ittps://safe.com) Support (../s/support/).

Register / Log In (/s/login/)

L 4 in b\\ © Safe Software Inc | Legal (https://www.safe.com/legal/).
(httpthittphittesutbntSirfetdtriommbtfanyiibnd EMEsbinaet))

Land Acknowledgement —

Safe Software respectfully acknowledges that we live, learn and work on the traditional and unceded territories of the Kwantlen, Katzie, and Semiahmoo First Nations.

https://community.safe.com/s/article/XSD-Driven-XML

78).

1111

